G-4/428/21

Roll No.

M.Sc. IV Semester Examination, 2021 MATHEMATICS

Paper I

(Functional Analysis-II)

Time: 3 Hours] [Max. Marks: 80

Note: All questions are compulsory. Question Paper comprises of 3 sections. Section A is objective type/multiple choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTIONA

 $1 \times 10 = 10$

(Objective Type Questions)

Choose the correct answer:

- 1. Norm is a:
 - (a) Continuous function
 - (b) Bicontiuous function
 - (c) Linear function
 - (d) None of these.
- **2.** l_p , $1 \le p < \infty$ is a :
 - (a) linear space
- (b) Non-linear space
- (c) Reflexive space
- (d) Linear and reflexive space

P.T.O.

- **3.** If T^{-1} is continuous, then T is :
 - (a) T^{-1} is open
- (b) T is open
- (c) T^{-1} is closed
- (d) T is open and closed.
- **4.** If $p(x) = ||f|| \cdot ||x||$, then p is :
 - (a) Linear functional
 - (b) Bounded functional
 - (c) Bounded and linear
 - (d) Sublinear functional
- **5.** If *X* is an inner-product space and $x, y \in X$, then the inequality $|\langle x, y \rangle| \le ||x|| \cdot ||y||$ is said to be:
 - (a) Triangle inequality
 - (b) Cauchy-Schwarz inequality
 - (c) Triangle and Cauchy-Schwarz inequality
 - (d) None of these.
- **6.** Let $T \in B(X)$ and $T = T^*$, then T is :
 - (a) Normal
- (b) Hermitian
- (c) Unitary
- (d) None of these.
- **7.** Dual of reflexive space is :
 - (a) Reflexive
- (b) Closed

(c) Open

(d) Not reflexive.

G-4/428/21

- **8.** A subset $A \subset X$ is said to be relatively compact, if
 - (a) A is closed in X (b) A is compact in X
 - (c) \bar{A} is compact in X (d) \bar{A} is closed in X.
- **9.** Let $T \in B(X, Y)$ and $T^* : Y^* \to X^*$ s.t. $T^*(y^*)(x) = y^*(T(x))$. Then T is :
 - (a) Linear

- (b) Bounded
- (c) Linear and bounded (d) None of these.
- **10.** If $T \in B(X)$ is an isometric isomorphism on X, then T is:
 - (a) Normal
- (b) Positive
- (c) Hermitian
- (d) Unitary.

SECTION B

 $4 \times 5 = 20$

(Short Answer Type Questions)

Note: Attempt one question from each unit.

Unit-I

1. State and prove closed graph theorem.

Or

Show that the principle of Uniform boundedness is not valid if X is not complete.

G-4/428/21

P.T.O.

Unit-II

2. Let *E* be a normed linear space over *K* and let *S* be a linear subspace of *E*. Suppose $z \in E$ and dist (z, S) = d > 0. Then there exists $g \in E^*$ such that $g(S) = \{0\}$, g(z) = d and ||g|| = 1.

Or

Let X and Y be normed spaces and $F: X \to Y$ be linear. Then F is compact if and only if for every bounded sequence $\{x_n\}$ in X, $\{F(x_n)\}$ has a subsequence which converges in Y.

Unit-III

3. Define sequential continuity. Show that the inner product is a continuous function.

Or

Show that \mathbb{C}^n is a complex inner-product space.

Unit-IV

4. State and prove Pythagorean theorem of an inner-product space.

Or

Let X be a separable infinite dimensional complex Hilbert space. Then X is isometrically isomorphic to l_2 .

G-4/428/21

Unit-V

5. The set of all self adjoint operators is a closed real linear subspace of B(X).

Or

If $T \in B(X)$ is such that $\langle Tx, x \rangle = 0$ for all $x \in X$, then T = 0.

SECTION C

 $10 \times 5 = 50$

(Long Answer Type Questions)

Note: Attempt all questions.

Unit-I

1. Let *X* be a Banach space and let *Y* be a normed space over the field *K*. If a set *F* of bounded linear transformations from *X* into *Y* is pointwise bounded, then it is uniformly bounded.

Or

A bounded linear transformation T from a Banach space X onto a Banach space Y has the property that the image $T(B_0)$ of the open unit ball $B_0 = B(0, 1) \subset X$ contains an open ball about $0 \in Y$.

Unit-II

2. Let *E* be a complex normed linear space and let

G-4/428/21 P.T.O.

M be a linear subspace of E. If $f \in M^*$, then there exists $g \in E^*$ such that $f \subset g$ and ||g|| = ||f||.

Or

Let X and Y are normed spaces and $F \in B(X, Y)$. Then

- (a) $R(F) \subset \{y \in Y : y^*(y) = 0 \text{ for all } y^* \in Z(F^*)\}.$ Equality holds iff R(F) is closed in Y.
- (b) $R(F^*) \subset \{x^* \in X^* : x^*(x) = 0 \text{ for all } x \in Z(F)\}.$ Equality holds if X and Y are Banach spaces and R(F) is closed in Y.

Unit-III

3. State and prove Jordan-von Neumann theorem.

Or

Let $\{e_i\}$ be a nonvoid arbitrary orthonormal set in an inner-product space X. Then following four conditions are equivalent:

- (i) {ei} is complete
- (ii) $x \perp \{e_i\} \Rightarrow x = 0$
- (iii) $x \in X \Rightarrow x = \sum_{i=1}^{\infty} \langle x, e_i \rangle e_i$
- (iv) $x \in X \Rightarrow ||x||^2 = \sum_{i=1}^{\infty} |\langle x, e_i \rangle|^2$.

[7]

Unit-IV

4. Show that every Hilbert space is reflexive.

Or

If M is a closed subspace of a Hilbert space X and $x \in X$, then there exists unique element y in M and z in M^{\perp} such that x = y + z.

Unit-V

5. State and prove Lax-Miligram theorem.

Or

If $T \in B(X)$ is normal if and only if its real and imaginary parts commute.

* * * * * C * * * * *